• Skip to main content

Biz Builder Mike

You can't sail Today's boat on Yesterdays wind - Michael Noel

  • Tokenomics is not Economics – Digital CX -The Digital Transformation
  • Resume / CV – Michael Noel
  • Contact Us
  • Featured

MIT AI

Mar 21 2023

Learning to grow machine-learning models

It’s no secret that OpenAI’s ChatGPT has some incredible capabilities — for instance, the chatbot can write poetry that resembles Shakespearean sonnets or debug code for a computer program. These abilities are made possible by the massive machine-learning model that ChatGPT is built upon. Researchers have found that when these types of models become large enough, extraordinary capabilities emerge.

But bigger models also require more time and money to train. The training process involves showing hundreds of billions of examples to a model. Gathering so much data is an involved process in itself. Then come the monetary and environmental costs of running many powerful computers for days or weeks to train a model that may have billions of parameters. 

“It’s been estimated that training models at the scale of what ChatGPT is hypothesized to run on could take millions of dollars, just for a single training run. Can we improve the efficiency of these training methods, so we can still get good models in less time and for less money? We propose to do this by leveraging smaller language models that have previously been trained,” says Yoon Kim, an assistant professor in MIT’s Department of Electrical Engineering and Computer Science and a member of the Computer Science and Artificial Intelligence Laboratory (CSAIL).

Rather than discarding a previous version of a model, Kim and his collaborators use it as the building blocks for a new model. Using machine learning, their method learns to “grow” a larger model from a smaller model in a way that encodes knowledge the smaller model has already gained. This enables faster training of the larger model.

Their technique saves about 50 percent of the computational cost required to train a large model, compared to methods that train a new model from scratch. Plus, the models trained using the MIT method performed as well as, or better than, models trained with other techniques that also use smaller models to enable faster training of larger models.

Reducing the time it takes to train huge models could help researchers make advancements faster with less expense, while also reducing the carbon emissions generated during the training process. It could also enable smaller research groups to work with these massive models, potentially opening the door to many new advances.

“As we look to democratize these types of technologies, making training faster and less expensive will become more important,” says Kim, senior author of a paper on this technique.

Kim and his graduate student Lucas Torroba Hennigen wrote the paper with lead author Peihao Wang, a graduate student at the University of Texas at Austin, as well as others at the MIT-IBM Watson AI Lab and Columbia University. The research will be presented at the International Conference on Learning Representations.

The bigger the better

Large language models like GPT-3, which is at the core of ChatGPT, are built using a neural network architecture called a transformer. A neural network, loosely based on the human brain, is composed of layers of interconnected nodes, or “neurons.” Each neuron contains parameters, which are variables learned during the training process that the neuron uses to process data.

Transformer architectures are unique because, as these types of neural network models get bigger, they achieve much better results.

“This has led to an arms race of companies trying to train larger and larger transformers on larger and larger datasets. More so than other architectures, it seems that transformer networks get much better with scaling. We’re just not exactly sure why this is the case,” Kim says.

These models often have hundreds of millions or billions of learnable parameters. Training all these parameters from scratch is expensive, so researchers seek to accelerate the process.

One effective technique is known as model growth. Using the model growth method, researchers can increase the size of a transformer by copying neurons, or even entire layers of a previous version of the network, then stacking them on top. They can make a network wider by adding new neurons to a layer or make it deeper by adding additional layers of neurons.

In contrast to previous approaches for model growth, parameters associated with the new neurons in the expanded transformer are not just copies of the smaller network’s parameters, Kim explains. Rather, they are learned combinations of the parameters of the smaller model.

Learning to grow

Kim and his collaborators use machine learning to learn a linear mapping of the parameters of the smaller model. This linear map is a mathematical operation that transforms a set of input values, in this case the smaller model’s parameters, to a set of output values, in this case the parameters of the larger model.

Their method, which they call a learned Linear Growth Operator (LiGO), learns to expand the width and depth of larger network from the parameters of a smaller network in a data-driven way.

But the smaller model may actually be quite large — perhaps it has a hundred million parameters — and researchers might want to make a model with a billion parameters. So the LiGO technique breaks the linear map into smaller pieces that a machine-learning algorithm can handle.

LiGO also expands width and depth simultaneously, which makes it more efficient than other methods. A user can tune how wide and deep they want the larger model to be when they input the smaller model and its parameters, Kim explains.

When they compared their technique to the process of training a new model from scratch, as well as to model-growth methods, it was faster than all the baselines. Their method saves about 50 percent of the computational costs required to train both vision and language models, while often improving performance.

The researchers also found they could use LiGO to accelerate transformer training even when they didn’t have access to a smaller, pretrained model.

“I was surprised by how much better all the methods, including ours, did compared to the random initialization, train-from-scratch baselines.” Kim says.

In the future, Kim and his collaborators are looking forward to applying LiGO to even larger models.

The work was funded, in part, by the MIT-IBM Watson AI Lab, Amazon, the IBM Research AI Hardware Center, Center for Computational Innovation at Rensselaer Polytechnic Institute, and the U.S. Army Research Office.

[mailpoet_form id="1"]

Learning to grow machine-learning models Republished from Source https://news.mit.edu/2023/new-technique-machine-learning-models-0322 via https://news.mit.edu/rss/topic/artificial-intelligence2

crowdsourcing week

Written by Adam Zewe MIT News Office · Categorized: AI, MIT AI · Tagged: AI, MIT AI

Mar 20 2023

Detailed images from space offer clearer picture of drought effects on plants

“MIT is a place where dreams come true,” says César Terrer, an assistant professor in the Department of Civil and Environmental Engineering. Here at MIT, Terrer says he’s given the resources needed to explore ideas he finds most exciting, and at the top of his list is climate science. In particular, he is interested in plant-soil interactions, and how the two can mitigate impacts of climate change. In 2022, Terrer received seed grant funding from the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) to produce drought monitoring systems for farmers. The project is leveraging a new generation of remote sensing devices to provide high-resolution plant water stress at regional to global scales.

Growing up in Granada, Spain, Terrer always had an aptitude and passion for science. He studied environmental science at the University of Murcia, where he interned in the Department of Ecology. Using computational analysis tools, he worked on modeling species distribution in response to human development. Early on in his undergraduate experience, Terrer says he regarded his professors as “superheroes” with a kind of scholarly prowess. He knew he wanted to follow in their footsteps by one day working as a faculty member in academia. Of course, there would be many steps along the way before achieving that dream. 

Upon completing his undergraduate studies, Terrer set his sights on exciting and adventurous research roles. He thought perhaps he would conduct field work in the Amazon, engaging with native communities. But when the opportunity arose to work in Australia on a state-of-the-art climate change experiment that simulates future levels of carbon dioxide, he headed south to study how plants react to CO2 in a biome of native Australian eucalyptus trees. It was during this experience that Terrer started to take a keen interest in the carbon cycle and the capacity of ecosystems to buffer rising levels of CO2 caused by human activity.

Around 2014, he began to delve deeper into the carbon cycle as he began his doctoral studies at Imperial College London. The primary question Terrer sought to answer during his PhD was “will plants be able to absorb predicted future levels of CO2 in the atmosphere?” To answer the question, Terrer became an early adopter of artificial intelligence, machine learning, and remote sensing to analyze data from real-life, global climate change experiments. His findings from these “ground truth” values and observations resulted in a paper in the journal Science. In it, he claimed that climate models most likely overestimated how much carbon plants will be able to absorb by the end of the century, by a factor of three. 

After postdoctoral positions at Stanford University and the Universitat Autonoma de Barcelona, followed by a prestigious Lawrence Fellowship, Terrer says he had “too many ideas and not enough time to accomplish all those ideas.” He knew it was time to lead his own group. Not long after applying for faculty positions, he landed at MIT. 

New ways to monitor drought

Terrer is employing similar methods to those he used during his PhD to analyze data from all over the world for his J-WAFS project. He and postdoc Wenzhe Jiao collect data from remote sensing satellites and field experiments and use machine learning to come up with new ways to monitor drought. Terrer says Jiao is a “remote sensing wizard,” who fuses data from different satellite products to understand the water cycle. With Jiao’s hydrology expertise and Terrer’s knowledge of plants, soil, and the carbon cycle, the duo is a formidable team to tackle this project.

According to the U.N. World Meteorological Organization, the number and duration of droughts has increased by 29 percent since 2000, as compared to the two previous decades. From the Horn of Africa to the Western United States, drought is devastating vegetation and severely stressing water supplies, compromising food production and spiking food insecurity. Drought monitoring can offer fundamental information on drought location, frequency, and severity, but assessing the impact of drought on vegetation is extremely challenging. This is because plants’ sensitivity to water deficits varies across species and ecosystems. 

Terrer and Jiao are able to obtain a clearer picture of how drought is affecting plants by employing the latest generation of remote sensing observations, which offer images of the planet with incredible spatial and temporal resolution. Satellite products such as Sentinel, Landsat, and Planet can provide daily images from space with such high resolution that individual trees can be discerned. Along with the images and datasets from satellites, the team is using ground-based observations from meteorological data. They are also using the MIT SuperCloud at MIT Lincoln Laboratory to process and analyze all of the data sets. The J-WAFS project is among one of the first to leverage high-resolution data to quantitatively measure plant drought impacts in the United States with the hopes of expanding to a global assessment in the future.

Assisting farmers and resource managers 

Every week, the U.S. Drought Monitor provides a map of drought conditions in the United States. The map has zero resolution and is more of a drought recap or summary, unable to predict future drought scenarios. The lack of a comprehensive spatiotemporal evaluation of historic and future drought impacts on global vegetation productivity is detrimental to farmers both in the United States and worldwide.  

Terrer and Jiao plan to generate metrics for plant water stress at an unprecedented resolution of 10-30 meters. This means that they will be able to provide drought monitoring maps at the scale of a typical U.S. farm, giving farmers more precise, useful data every one to two days. The team will use the information from the satellites to monitor plant growth and soil moisture, as well as the time lag of plant growth response to soil moisture. In this way, Terrer and Jiao say they will eventually be able to create a kind of “plant water stress forecast” that may be able to predict adverse impacts of drought four weeks in advance. “According to the current soil moisture and lagged response time, we hope to predict plant water stress in the future,” says Jiao. 

The expected outcomes of this project will give farmers, land and water resource managers, and decision-makers more accurate data at the farm-specific level, allowing for better drought preparation, mitigation, and adaptation. “We expect to make our data open-access online, after we finish the project, so that farmers and other stakeholders can use the maps as tools,” says Jiao. 

Terrer adds that the project “has the potential to help us better understand the future states of climate systems, and also identify the regional hot spots more likely to experience water crises at the national, state, local, and tribal government scales.” He also expects the project will enhance our understanding of global carbon-water-energy cycle responses to drought, with applications in determining climate change impacts on natural ecosystems as a whole.

[mailpoet_form id="1"]

Detailed images from space offer clearer picture of drought effects on plants Republished from Source https://news.mit.edu/2023/detailed-images-space-offer-clearer-picture-drought-effects-plants-0320 via https://news.mit.edu/rss/topic/artificial-intelligence2

crowdsourcing week

Written by Carolyn Blais Abdul Latif Jameel Water and Food Systems Lab · Categorized: AI, MIT AI · Tagged: AI, MIT AI

Mar 13 2023

Mining the right transition metals in a vast chemical space

Swift and significant gains against climate change require the creation of novel, environmentally benign, and energy-efficient materials. One of the richest veins researchers hope to tap in creating such useful compounds is a vast chemical space where molecular combinations that offer remarkable optical, conductive, magnetic, and heat transfer properties await discovery.

But finding these new materials has been slow going.

“While computational modeling has enabled us to discover and predict properties of new materials much faster than experimentation, these models aren’t always trustworthy,” says Heather J. Kulik  PhD ’09, associate professor in the departments of Chemical Engineering and Chemistry. “In order to accelerate computational discovery of materials, we need better methods for removing uncertainty and making our predictions more accurate.”

A team from Kulik’s lab set out to address these challenges with a team including Chenru Duan PhD ’22.

A tool for building trust

Kulik and her group focus on transition metal complexes, molecules comprised of metals found in the middle of the periodic table that are surrounded by organic ligands. These complexes can be extremely reactive, which gives them a central role in catalyzing natural and industrial processes. By altering the organic and metal components in these molecules, scientists can generate materials with properties that can improve such applications as artificial photosynthesis, solar energy absorption and storage, higher efficiency OLEDS (organic light emitting diodes), and device miniaturization.

“Characterizing these complexes and discovering new materials currently happens slowly, often driven by a researcher’s intuition,” says Kulik. “And the process involves trade-offs: You might find a material that has good light-emitting properties, but the metal at the center may be something like iridium, which is exceedingly rare and toxic.”

Researchers attempting to identify nontoxic, earth-abundant transition metal complexes with useful properties tend to pursue a limited set of features, with only modest assurance that they are on the right track. “People continue to iterate on a particular ligand, and get stuck in local areas of opportunity, rather than conduct large-scale discovery,” says Kulik.

To address these screening inefficiencies, Kulik’s team developed a new approach — a machine-learning based “recommender” that lets researchers know the optimal model for pursuing their search. Their description of this tool was the subject of a paper in Nature Computational Science in December.

“This method outperforms all prior approaches and can tell people when to use methods and when they’ll be trustworthy,” says Kulik.

The team, led by Duan, began by investigating ways to improve the conventional screening approach, density functional theory (DFT), which is based on computational quantum mechanics. He built a machine learning platform to determine how accurate density functional models were in predicting structure and behavior of transition metal molecules.

“This tool learned which density functionals were the most reliable for specific material complexes,” says Kulik. “We verified this by testing the tool against materials it had never encountered before, where it in fact chose the most accurate density functionals for predicting the material’s property.”

A critical breakthrough for the team was its decision to use the electron density — a fundamental quantum mechanical property of atoms — as a machine learning input. This unique identifier, as well as the use of a neural network model to carry out the mapping, creates a powerful and efficient aide for researchers who want to determine whether they are using the appropriate density functional for characterizing their target transition metal complex. “A calculation that would take days or weeks, which makes computational screening nearly infeasible, can instead take only hours to produce a trustworthy result.”

Kulik has incorporated this tool into molSimplify, an open source code on the lab’s website, enabling researchers anywhere in the world to predict properties and model transition metal complexes.

Optimizing for multiple properties

In a related research thrust, which they showcased in a recent publication in JACS Au, Kulik’s group demonstrated an approach for quickly homing in on transition metal complexes with specific properties in a large chemical space.

Their work springboarded off a 2021 paper showing that agreement about the properties of a target molecule among a group of different density functionals significantly reduced the uncertainty of a model’s predictions.

Kulik’s team exploited this insight by demonstrating, in a first, multi-objective optimization. In their study, they successfully identified molecules that were easy to synthesize, featuring significant light-absorbing properties, using earth-abundant metals. They searched 32 million candidate materials, one of the largest spaces ever searched for this application. “We took apart complexes that are already in known, experimentally synthesized materials, and we recombined them in new ways, which allowed us to maintain some synthetic realism,” says Kulik.

After collecting DFT results on 100 compounds in this giant chemical domain, the group trained machine learning models to make predictions on the entire 32 million-compound space, with an eye to achieving their specific design goals. They repeated this process generation after generation to winnow out compounds with the explicit properties they wanted.

“In the end we found nine of the most promising compounds, and discovered that the specific compounds we picked through machine learning contained pieces (ligands) that had been experimentally synthesized for other applications requiring optical properties, ones with favorable light absorption spectra,” says Kulik.

Applications with impact

While Kulik’s overarching goal involves overcoming limitations in computational modeling, her lab is taking full advantage of its own tools to streamline the discovery and design of new, potentially impactful materials.

In one notable example, “We are actively working on the optimization of metal–organic frameworks for the direct conversion of methane to methanol,” says Kulik. “This is a holy grail reaction that folks have wanted to catalyze for decades, but have been unable to do efficiently.” 

The possibility of a fast path for transforming a very potent greenhouse gas into a liquid that is easily transported and could be used as a fuel or a value-added chemical holds great appeal for Kulik. “It represents one of those needle-in-a-haystack challenges that multi-objective optimization and screening of millions of candidate catalysts is well-positioned to solve, an outstanding challenge that’s been around for so long.”

[mailpoet_form id="1"]

Mining the right transition metals in a vast chemical space Republished from Source https://news.mit.edu/2023/mining-right-transition-metals-vast-chemical-space-0313 via https://news.mit.edu/rss/topic/artificial-intelligence2

crowdsourcing week

Written by Leda Zimmerman Department of Chemical Engineering · Categorized: AI, MIT AI · Tagged: AI, MIT AI

Mar 12 2023

A new method to boost the speed of online databases

Hashing is a core operation in most online databases, like a library catalogue or an e-commerce website. A hash function generates codes that replace data inputs. Since these codes are shorter than the actual data, and usually a fixed length, this makes it easier to find and retrieve the original information.

However, because traditional hash functions generate codes randomly, sometimes two pieces of data can be hashed with the same value. This causes collisions — when searching for one item points a user to many pieces of data with the same hash value. It takes much longer to find the right one, resulting in slower searches and reduced performance.

Certain types of hash functions, known as perfect hash functions, are designed to sort data in a way that prevents collisions. But they must be specially constructed for each dataset and take more time to compute than traditional hash functions.

Since hashing is used in so many applications, from database indexing to data compression to cryptography, fast and efficient hash functions are critical. So, researchers from MIT and elsewhere set out to see if they could use machine learning to build better hash functions.

They found that, in certain situations, using learned models instead of traditional hash functions could result in half as many collisions. Learned models are those that have been created by running a machine-learning algorithm on a dataset. Their experiments also showed that learned models were often more computationally efficient than perfect hash functions.

“What we found in this work is that in some situations we can come up with a better tradeoff between the computation of the hash function and the collisions we will face. We can increase the computational time for the hash function a bit, but at the same time we can reduce collisions very significantly in certain situations,” says Ibrahim Sabek, a postdoc in the MIT Data Systems Group of the Computer Science and Artificial Intelligence Laboratory (CSAIL).

Their research, which will be presented at the International Conference on Very Large Databases, demonstrates how a hash function can be designed to significantly speed up searches in a huge database. For instance, their technique could accelerate computational systems that scientists use to store and analyze DNA, amino acid sequences, or other biological information.

Sabek is co-lead author of the paper with electrical engineering and computer science (EECS) graduate student Kapil Vaidya. They are joined by co-authors Dominick Horn, a graduate student at the Technical University of Munich; Andreas Kipf, an MIT postdoc; Michael Mitzenmacher, professor of computer science at the Harvard John A. Paulson School of Engineering and Applied Sciences; and senior author Tim Kraska, associate professor of EECS at MIT and co-director of the Data Systems and AI Lab.

Hashing it out

Given a data input, or key, a traditional hash function generates a random number, or code, that corresponds to the slot where that key will be stored. To use a simple example, if there are 10 keys to be put into 10 slots, the function would generate a random integer between 1 and 10 for each input. It is highly probable that two keys will end up in the same slot, causing collisions.

Perfect hash functions provide a collision-free alternative. Researchers give the function some extra knowledge, such as the number of slots the data are to be placed into. Then it can perform additional computations to figure out where to put each key to avoid collisions. However, these added computations make the function harder to create and less efficient.

“We were wondering, if we know more about the data — that it will come from a particular distribution — can we use learned models to build a hash function that can actually reduce collisions?” Vaidya says.

A data distribution shows all possible values in a dataset, and how often each value occurs. The distribution can be used to calculate the probability that a particular value is in a data sample.

The researchers took a small sample from a dataset and used machine learning to approximate the shape of the data’s distribution, or how the data are spread out. The learned model then uses the approximation to predict the location of a key in the dataset.

They found that learned models were easier to build and faster to run than perfect hash functions and that they led to fewer collisions than traditional hash functions if data are distributed in a predictable way. But if the data are not predictably distributed, because gaps between data points vary too widely, using learned models might cause more collisions.

“We may have a huge number of data inputs, and each one has a different gap between it and the next one, so learning that is quite difficult,” Sabek explains.

Fewer collisions, faster results

When data were predictably distributed, learned models could reduce the ratio of colliding keys in a dataset from 30 percent to 15 percent, compared with traditional hash functions. They were also able to achieve better throughput than perfect hash functions. In the best cases, learned models reduced the runtime by nearly 30 percent.

As they explored the use of learned models for hashing, the researchers also found that throughout was impacted most by the number of sub-models. Each learned model is composed of smaller linear models that approximate the data distribution. With more sub-models, the learned model produces a more accurate approximation, but it takes more time.

“At a certain threshold of sub-models, you get enough information to build the approximation that you need for the hash function. But after that, it won’t lead to more improvement in collision reduction,” Sabek says.

Building off this analysis, the researchers want to use learned models to design hash functions for other types of data. They also plan to explore learned hashing for databases in which data can be inserted or deleted. When data are updated in this way, the model needs to change accordingly, but changing the model while maintaining accuracy is a difficult problem.

“We want to encourage the community to use machine learning inside more fundamental data structures and operations. Any kind of core data structure presents us with an opportunity use machine learning to capture data properties and get better performance. There is still a lot we can explore,” Sabek says.

This work was supported, in part, by Google, Intel, Microsoft, the National Science Foundation, the United States Air Force Research Laboratory, and the United States Air Force Artificial Intelligence Accelerator.

[mailpoet_form id="1"]

A new method to boost the speed of online databases Republished from Source https://news.mit.edu/2023/new-method-hash-function-online-databases-0313 via https://news.mit.edu/rss/topic/artificial-intelligence2

crowdsourcing week

Written by Adam Zewe MIT News Office · Categorized: AI, MIT AI · Tagged: AI, MIT AI

Mar 10 2023

MIT professor to Congress: “We are at an inflection point” with AI

Government should not “abdicate” its responsibilities and leave the future path of artificial intelligence solely to Big Tech, Aleksander Mądry, the Cadence Design Systems Professor of Computing at MIT and director of the MIT Center for Deployable Machine Learning, told a Congressional panel on Wednesday. 

Rather, Mądry said, government should be asking questions about the purpose and explainability of the algorithms corporations are using, as a precursor to regulation, which he described as “an important tool” in ensuring that AI is consistent with society’s goals. If the government doesn’t start asking questions, then “I am extremely worried” about the future of AI, Mądry said in response to a question from Rep. Gerald Connolly.

Mądry, a leading expert on explainability and AI, was testifying at a hearing titled “Advances in AI: Are We Ready for a Tech Revolution?” before the House Subcommittee on Cybersecurity, Information Technology, and Government Innovation, a panel of the House Committee on Government Reform and Oversight. The other witnesses at the hearing were former Google CEO Eric Schmidt, IBM Vice President Scott Crowder, and Center for AI and Digital Policy Senior Research Director Merve Hickok.

In her opening remarks, Subcommittee Chair Rep. Nancy Mace cited the book “The Age of AI: And Our Human Future” by Schmidt, Henry Kissinger, and Dan Huttenlocher, the dean of the MIT Schwarzman College of Computing. She also called attention to a March 3 op-ed in The Wall Street Journal by the three authors that summarized the book while discussing ChatGPT. Mace said her formal opening remarks had been entirely written by ChatGPT.

In his prepared remarks, Mądry raised three overarching points. First, he noted that AI is “no longer a matter of science fiction” or confined to research labs. It is out in the world, where it can bring enormous benefits but also poses risks.

Second, he said AI exposes us to “interactions that go against our intuition.” He said because AI tools like ChatGPT mimic human communication, people are too likely to unquestioningly believe what such large language models produce. In the worst case, Mądry warned, human analytical skills will atrophy. He also said it would be a mistake to regulate AI as if it were human — for example, by asking AI to explain its reasoning and assuming that the resulting answers are credible.

Finally, he said too little attention has been paid to problems that will result from the nature of the AI “supply chain” — the way AI systems are built on top of each other. At the base are general systems like ChatGPT, which can be developed by only a few companies because they are so expensive and complex to build. Layered on top of such systems are many AI systems designed to handle a particular task, like figuring out whom a company should hire. 

Mądry said this layering raised several “policy-relevant” concerns. First, the entire system of AI is subject to whatever vulnerabilities or biases are in the large system at its base, and is dependent on the work of a few, large companies. Second, the interaction of AI systems is not well-understood from a technical standpoint, making the results of AI even more difficult to predict or explain, and making the tools difficult to “audit.” Finally, the mix of AI tools makes it difficult to know whom to hold responsible when a problem results — who should be legally liable and who should address the concern.

In the written material submitted to the subcommittee, Mądry concluded, “AI technology is not particularly well-suited for deployment through complex supply chains,” even though that is exactly how it is being deployed.

Mądry ended his testimony by calling on Congress to probe AI issues and to be prepared to act. “We are at an inflection point in terms of what future AI will bring. Seizing this opportunity means discussing the role of AI, what exactly we want it to do for us, and how to ensure it benefits us all. This will be a difficult conversation but we do need to have it, and have it now,” he told the subcommittee.

The testimony of all the hearing witnesses and a video of the hearing, which lasted about two hours, is available online.

[mailpoet_form id="1"]

MIT professor to Congress: “We are at an inflection point” with AI Republished from Source https://news.mit.edu/2023/mit-congress-inflection-point-ai-0310 via https://news.mit.edu/rss/topic/artificial-intelligence2

crowdsourcing week

Written by MIT Washington Office · Categorized: AI, MIT AI · Tagged: AI, MIT AI

  • Go to page 1
  • Go to page 2
  • Go to page 3
  • Interim pages omitted …
  • Go to page 18
  • Go to Next Page »
  • Twitter
  • Facebook
  • About Us
  • LinkedIn
  • ANTI-SPAM POLICY
  • Google+
  • API Terms and Conditions
  • RSS
  • Archive Page
  • Biz Builder Mike is all about New World Marketing
  • Cryptocurrency Exchange
  • Digital Millennium Copyright Act (DMCA) Notice
  • DMCA Safe Harbor Explained: Why Your Website Needs a DMCA/Copyright Policy
  • Marketing? Well, how hard can that be?
  • Michael Noel
  • Michael Noel CBP
  • Noels Law of decentralization

Copyright © 2023 · Altitude Pro on Genesis Framework · WordPress · Log in